Enhancing Biomass-Exopolysaccharides Production of Lignosus rhinocerus in a High-Scale Stirred-Tank Bioreactor and Its Potential Lipid as Bioenergy

Author:

Usuldin Siti Rokhiyah Ahmad12,Ilham Zul34ORCID,Jamaludin Adi Ainurzaman4ORCID,Ahmad Rahayu5,Wan-Mohtar Wan Abd Al Qadr Imad23ORCID

Affiliation:

1. Agro-Biotechnology Institute (ABI), National Institutes of Biotechnology Malaysia (NIBM), Serdang 43400, Malaysia

2. Functional Omics and Bioprocess Development Laboratory, Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia

3. Bioresources and Bioprocessing Research Group, Institute of Biological Sciences, Faculty of Sciences, Universiti Malaya, Kuala Lumpur 50603, Malaysia

4. Environmental Science and Management Program, Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia

5. Halal Action Laboratory, Kolej GENIUS Insan, Universiti Sains Islam Malaysia, Bandar Baru Nilai, Nilai 71800, Malaysia

Abstract

The depletion of fossil fuels and the emission of greenhouse gases have increased the demand for new and sustainable energy sources, leading to growing interest in using fast-growing filamentous fungi as a source of bioenergy. This study aimed to optimize the production of exopolysaccharides (EPS) and mycelial biomass (MB) from the native medicinal mushroom, Lignosus rhinocerus, through submerged liquid fermentation. Using response surface methodology (RSM), it was found that the glucose concentration and speed of agitation significantly influenced the production of MB and EPS (p < 0.05), while the initial pH medium had an insignificant effect. The validated optimized parameters of 50.0 g/L glucose, initial pH 4.0, and 128 rpm for speed of agitation were tested in 500 mL shake flasks, 5 L, and 13 L stirred-tank (STR) bioreactors. The production of MB and EPS increased significantly by ~1.2-fold in the 5 L STR and further increased to ~1.7-fold (MB) and ~2.4-fold (EPS) in the 13 L STR bioreactor compared to the shake flask. The lipid content of MB was also determined, with a result of 2.07% w/w using the Soxhlet extraction method. To conclude, this study emphasizes the ability of L. rhinocerus as a new source of bioenergy through large-scale production, with optimized parameters serving as a reference for future research and practical applications.

Funder

Ministry of Higher Education

Universiti Sains Islam Malaysia

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3