Local Renewable Energy Communities: Classification and Sizing

Author:

Canizes Bruno1ORCID,Costa João2,Bairrão Diego2,Vale Zita1ORCID

Affiliation:

1. GECAD Research Group on Intelligent Engineering and Computing for Advanced Innovation and Development, LASI—Intelligent Systems Associate Laboratory, Polytechnic of Porto, R. Dr. António Bernardino de Almeida, 431, 4200-072 Porto, Portugal

2. School of Engineering, Polytechnic of Porto, R. Dr. António Bernardino de Almeida, 431, 4200-072 Porto, Portugal

Abstract

The transition from the current energy architecture to a new model is evident and inevitable. The coming future promises innovative and increasingly rigorous projects and challenges for everyone involved in this value chain. Technological developments have allowed the emergence of new concepts, such as renewable energy communities, decentralized renewable energy production, and even energy storage. These factors have incited consumers to play a more active role in the electricity sector and contribute considerably to the achievement of environmental objectives. With the introduction of renewable energy communities, the need to develop new management and optimization tools, mainly in generation and load management, arises. Thus, this paper proposes a platform capable of clustering consumers and prosumers according to their energy and geographical characteristics to create renewable energy communities. Thus, this paper proposes a platform capable of clustering consumers and prosumers according to their energy and geographical characteristics to create renewable energy communities. Moreover, through this platform, the identification (homogeneous energy communities, mixed energy communities, and self-sufficient energy communities) and the size of each community are also obtained. Three algorithms are considered to achieve this purpose: K-means, density-based spatial clustering of applications with noise, and linkage algorithms (single-link, complete-link, average-link, and Wards’ method). With this work, it is possible to verify each algorithm’s behavior and effectiveness in clustering the players into communities. A total of 233 members from 9 cities in the northern region of Portugal (Porto District) were considered to demonstrate the application of the proposed platform. The results demonstrate that the linkage algorithms presented the best classification performance, achieving 0.631 by complete-ink in the Silhouette score, 2124.174 by Ward’s method in the Calinski-Harabasz index, and 0.329 by single-link on the Davies-Bouldin index. Additionally, the developed platform demonstrated adequacy, versatility, and robustness concerning the classification and sizing of renewable energy communities.

Funder

NGS Innovation Pact—New Generation Storage

NGS consortium

NextGeneration EU

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3