LSTM-Pearson Gas Concentration Prediction Model Feature Selection and Its Applications

Author:

Liu Chao12,Zhang Ailin1,Xue Junhua12,Lei Chen1,Zeng Xiangzhen1

Affiliation:

1. College of Safety Science and Engineering, Xi’an University of Science and Technology, Xi’an 710054, China

2. Key Laboratory of Western Mine Exploitation and Hazard Prevention of the Ministry of Education, Xi’an 710054, China

Abstract

Gas disasters threaten the safe operation of coal mines. Improving the accuracy of gas concentration predictions can effectively prevent gas disasters and reduce disaster losses. Traditional gas concentration prediction methods poorly couple the gas concentration and its influencing factors when dealing with a great number of features and data, which results in low prediction accuracy and poor efficiency. To solve this problem, we used an innovative Pearson-LSTM prediction model, which uses the Pearson coefficient to select features of gas concentration data. It then uses long short-term memory (LSTM) that has been optimized using adaptive moment estimation (Adam) to predict a time series. In the process of model establishment, the optimal prediction model was obtained by constantly adjusting the number of network layers and batch size based on the fitting effect, performance issues, and result errors. Taking monitoring data from the 2407 working face at Yuhua Coal Mine as the sample, we compared our method with the traditional Bi-RNN and GRU machine learning methods. The results show that, compared with the Bi-RNN and GRU models, the mean square error of the Pearson-LSTM model can be reduced to 0.015 with an error range of 0.005 to 0.04, which has higher prediction accuracy. This method has excellent precision and robustness for forecasting gas concentration time series. The model was able to make predictions 15 min in advance for the 2409 working face of the Yuhua Coal Mine, and the mean square error could be lowered to 0.008, which verifies the applicability and reliability of the model and provides a reference for ensuring the safety of coal mine operations. In summary, Pearson-LSTM models have higher accuracy and robustness and can effectively predict changes in gas concentration, thus allowing for more response time for accidents, which is important for coal mine production safety.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference33 articles.

1. Short-Term Forecasting Method of Coalmine Gas Concentration Based on Chaotic Time Series;Cheng;J. China Univ. Min. Technol.,2008

2. Statistical analysis of coal mine gas accidents in China from 2007 to 2010;An;Saf. Coal Mines,2011

3. Numerical simulation study on influence factors of gas accumulation at fully mechanized caving Face;Wang;Saf. Coal Mines,2018

4. Gas concentration dynamic prediction method of mixtures kernels LSSVM based on ACPSO and PSR;Fu;Chin. J. Sens. Actuators,2016

5. The modeling and simulation of gas concentration prediction based on De-Eda-Svm;Fu;Chin. J. Sens. Actuators,2016

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3