LoRaWAN Gateway Placement in Smart Agriculture: An Analysis of Clustering Algorithms and Performance Metrics

Author:

Correia Felipe Pinheiro12ORCID,Silva Samara Ruthielle da3ORCID,Carvalho Fabricio Braga Soares de3ORCID,Alencar Marcelo Sampaio de1ORCID,Assis Karcius Day Rosario1ORCID,Bacurau Rodrigo Moreira4ORCID

Affiliation:

1. Graduate Program in Electrical Engineering, Department of Electrical and Computer Engineering, Federal University of Bahia (UFBA), Salvador 40210-630, Brazil

2. Federal Institute of Education, Science and Technology of Sertão Pernambucano (IF Sertão PE), Petrolina 56316-686, Brazil

3. Graduate Program in Electrical Engineering, Department of Electrical Engineering, Federal University of Paraíba (UFPB), João Pessoa 58051-900, Brazil

4. Department of Computational Mechanics (DMC), School of Mechanical Engineering (FEM), State University of Campinas (UNICAMP), Campinas 13083-860, Brazil

Abstract

The use of Wireless Sensor Networks (WSN) in smart agriculture has emerged in recent years. LoRaWAN (Long Range Wide Area Networks) is widely recognized as one of the most suitable technologies for this application, due to its capacity to transmit data over long distances while consuming little energy. Determining the number and location of gateways (GWs) in a production setting is one of the most challenging tasks of planning and building this type of network. Various solutions to the LoRaWAN gateway placement problem have been proposed in the literature, utilizing clustering algorithms; however, few works have compared the performance of various strategies. Considering all these facts, this paper proposes a strategy for planning the number and localization of LoRaWAN GWs, to cover a vast agricultural region. Four clustering algorithms were used to deploy the network GWs: K-Means and its three versions: Minibatch K-Means; Bisecting K-Means; and Fuzzy c-Means (FCM). As performance metrics, uplink delivery rate (ULDR) and energy consumption were used, to provide subsidies for the network designer and the client, with which to choose the best setup. A stochastic energy model was used to evaluate power consumption. Simulations were performed, considering two scenarios: Scenario 1 with lower-medium concurrence, and Scenario 2 with higher-medium concurrence. The simulations showed that the use of more than two GWs in Scenario 1 did not lead to significant improvements in ULDR and energy consumption, whereas, in Scenario 2, the suggested number of GWs was between 11 and 15. The results showed that for Scenario 1, the FCM algorithm was superior to all alternatives, regarding the ULDR and mean energy consumption, while the K-Means algorithm was superior with respect to maximum energy consumption. In relation to Scenario 2, K-Means caused the best ULDR and mean consumption, while FCM produced the lowest maximum consumption.

Funder

Federal University of Paraíba

Research Productivity PROPESQ/PRPG/UFPB

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3