Distribution Network Reconfiguration Using Iterative Branch Exchange and Clustering Technique

Author:

Pereira Ezequiel C.1,Barbosa Carlos H. N. R.2,Vasconcelos João A.3

Affiliation:

1. CEMIG Distribuição S.A. 1200, Barbacena Avenue, Belo Horizonte 30190-131, MG, Brazil

2. DEELT/UFOP, Federal University of Ouro Preto, Ouro Preto 35400-000, MG, Brazil

3. PPGEE/DEE/UFMG, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil

Abstract

The distribution network reconfiguration problem (DNRP) refers to the challenge of searching for a given power distribution network configuration with better operating conditions, such as minimized energy losses and improved voltage levels. To accomplish that, this paper revisits the branch exchange heuristics and presents a method in which it is coupled with other techniques such as evolutionary metaheuristics and cluster analysis. The methodology is applied to four benchmark networks, the 33-, 70-, 84-, and 136-bus networks, and the results are compared with those available in the literature, using the criteria of the number of power flow executions. The methodology minimized the four systems starting from the initial configuration of the network. The main contributions of this work are the use of clustering techniques to reduce the search space of the DNRP; the consideration of voltage regulation banks and voltage-dependent loads in the feeder, requiring the addition of a constraint to the mono-objective model to guarantee the transferred load will be supplied at the best voltage magnitude level, and the application of the methodology in real distribution networks to solve a set of 81 real DNRPs from CEMIG-D (the distribution branch of the Energy Company of Minas Gerais). Four out of those are presented as case studies to demonstrate the applicability of the approach, which efficiently found configurations with lower power and energy losses with few PF runs.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3