Parameter Estimation of Poisson–Gaussian Signal-Dependent Noise from Single Image of CMOS/CCD Image Sensor Using Local Binary Cyclic Jumping

Author:

Li Jinyu,Wu Yuqian,Zhang Yu,Zhao JufengORCID,Si Yingsong

Abstract

Since signal-dependent noise in a local weak texture region of a noisy image is approximated as additive noise, the corresponding noise parameters can be estimated from a given set of weakly textured image blocks. As a result, the meticulous selection of weakly textured image blocks plays a decisive role to estimate the noise parameters accurately. The existing methods consider the finite directions of the texture of image blocks or directly use the average value of an image block to select the weakly textured image block, which can result in errors. To overcome the drawbacks of the existing methods, this paper proposes a novel noise parameter estimation method using local binary cyclic jumping to aid in the selection of these weakly textured image blocks. The texture intensity of the image block is first defined by the cumulative average of the LBCJ information in the eight neighborhoods around the pixel, and, subsequently, the threshold is set for selecting weakly textured image blocks through texture intensity distribution of the image blocks and inverse binomial cumulative function. The experimental results reveal that the proposed method outperforms the existing alternative algorithms by 23% and 22% for the evaluative measures of MSE (a) and MSE (b), respectively.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3