Robinia pseudoacacia Seedlings Are More Sensitive to Rainfall Frequency Than to Rainfall Intensity

Author:

Li Mingyan,Guo XiaoORCID,Zhao Song,Liu Lele,Xu Zhenwei,Du Ning,Guo Weihua

Abstract

Climate change causes the global redistribution of precipitation, yet little is known about the effects of the changes in precipitation intensity and frequency on the seedlings of wood trees in warm temperate forests. In this study, we focused on the effects of variability in both the intensity and frequency of water supply on the physiological traits, biomass, and growth of an important plantation wood species, Robinia pseudoacacia. In the greenhouse, we exposed R. pseudoacacia seedlings to three rainfall intensity and three rainfall frequency treatments. The results from the 62-day experiment revealed that lower rainfall intensity and frequency significantly reduced the photosynthetic performance, growth, and biomass of the tree seedlings. In lower rainfall intensity and frequency conditions, the seedlings had improved water absorption and utilization by increasing the water use efficiency and root shoot ratio, and reduced water consumption by defoliating the compound leaves of the lower crown. More importantly, we found that R. pseudoacacia seedlings were more sensitive to rainfall frequency than to rainfall intensity. Therefore, our results suggest that increasing the irrigation water, especially irrigation frequency, could better facilitate the survival and growth of R. pseudoacacia seedlings and eventually promote the process of vegetation restoration in the future global climate change context.

Funder

National Natural Science Foundation of China

Key Research and Development Program of Shandong Province

Advanced Talents Foundation of Qingdao Agricultural University

Publisher

MDPI AG

Subject

Forestry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3