Identification of Underground Artificial Cavities Based on the Bayesian Convolutional Neural Network

Author:

Xia Jigen12,Peng Ronghua1ORCID,Li Zhiqiang2,Li Junyi2ORCID,He Yizhuo3,Li Gang3ORCID

Affiliation:

1. School of Geophysics and Geomatics, China University of Geosciences, Wuhan 430074, China

2. The 22nd Research Institute of China Electronics Technology Group Corporation, Xinxiang 453003, China

3. College of Instrumentation and Electrical Engineering, Jilin University, Changchun 130012, China

Abstract

The development of underground artificial cavities plays an important role in the exploitation of urban spatial resources. As the rapidly growing number of underground artificial cavities with different depths and scales increases, the detection and identification of underground artificial cavities has become a key issue in underground engineering studies. Geophysical techniques have been widely used for the construction, management, and maintenance of underground artificial cavities. In this study, we present two identification methods for underground artificial cavities. Apparent resistivity imaging is the most popular technique for quickly identifying underground artificial cavities, using the forward simulation results of a three-dimensional earth model and comparing these with the preset positions of artificial cavities, as demonstrated in the experiment. To further improve the efficiency of underground artificial cavity identification, we developed a fast recognition approach for underground artificial cavities based on the Bayesian convolutional neural network (BCNN). Compared to a traditional convolutional neural network, the performance of the BCNN method was greatly improved in terms of the classification accuracy and efficiency of identifying underground artificial cavities with apparent resistivity image datasets.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3