Evaluation of the Cross-Sectional Shape of μ–Grooves Produced in Stainless Steel 304 by Laser-Induced Etching Technique

Author:

Kim Jonghun,Oh Kwang H.

Abstract

The variation in cross-sectional profile of a microgroove fabricated with focused and diverging laser irradiation is demonstrated with ray tracing. To verify the result of ray tracing, stainless-steel 304 microgrooves were manufactured utilizing the conventional lens-based and optical fiber-based laser-induced etching techniques in phosphoric acid solution. Three distinctive groove geometries, i.e., a flat surface with no groove, an intermediate stage groove, and a fully developed V-groove, were rendered for numerical analysis. For focusing mode, the first and second reflections were caused by high laser intensity and the second reflected beam could lead to variation in the groove shape such as a U-shaped groove or a V-shaped groove in accordance with etchant concentration. On the contrary, a weak laser entirely distributed at the groove sidewall could not induce a chemical reaction, leading to a V-shaped groove. The effect of process variables such as laser power (intensity) and etchant concentration on the cross-sectional profiles of a groove are closely examined through the computed simulation results.

Funder

Ministry of Trade, Industry and Energy

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3