Growth of a Large, Single-Crystalline WS2 Monolayer for High-Performance Photodetectors by Chemical Vapor Deposition

Author:

Chen Ying

Abstract

2D WS2 is a promising candidate for the next generation nanoelectronics, spintronics, valleytronics, and optoelectronics. However, the uncontrollably large-area growth of WS2 nanosheets and their unsatisfactory performance of the photodetectors based on WS2 hindered its applications. Here, we proposed a CVD method using tungstic acid as the precursors to grow WS2 flakes. After being characterized by AFM, Raman, PL, and TEM, we found the as-grown WS2 flakes were high-quality structures. Then the photodetectors based on the as-grown WS2 were fabricated, which exhibited high responsivity (7.3 A W−1), a fast response rate (a response time of 5 ms and a recovery time of 7 ms), prefect external quantum efficiency (EQE) (1814%), and remarkable detectivity (D*) (3.4 × 1012 Jones). Our works provided a new CVD method to grow some high-quality WS2 nanosheets.

Funder

Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3