Abstract
The trends of wearable health monitoring systems have led to growing demands for gait-capturing devices. However, comfortability and durability under repeated stress are still challenging to achieve in existing sensor-enabled footwear. Herein, a flexible textile piezoresistive sensor (TPRS) consisting of a reduced graphene oxide (rGO)-cotton) fabric electrode and an Ag fabric circuit electrode is proposed. Based on the mechanical and electrical properties of the two fabric electrodes, the TPRS exhibits superior sensing performance, with a high sensitivity of 3.96 kPa-1 in the lower pressure range of 0–36 kPa, wide force range (0–100 kPa), fast response time (170 ms), remarkable durability stability (1000 cycles) and detection ability in different pressures ranges. For the prac-tical application of capturing plantar pressure, six TPRSs were mounted on a flexible printed circuit board and integrated into an insole. The dynamic plantar pressure distribution during walking was derived in the form of pressure maps. The proposed fully-textile piezoresistive sensor is a strong candidate for next-generation plantar pressure wearable monitoring devices.
Funder
National Key Research and Development Program of China
Subject
Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering
Cited by
33 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献