The Correctness of the Simplified Bernoulli Trial (SBT) Collision Scheme of Calculations of Two-Dimensional Flows

Author:

Shterev KirilORCID

Abstract

Micro-electromechanical systems (MEMS) have developed rapidly in recent years in various technical fields that have increased their interest in the Direct Simulation Monte Carlo (DSMC) method. In this paper, we present a simple representation of the DSMC collision scheme and investigate the correctness of the Simplified Bernoulli Trial (SBT) collision scheme for the calculation of two-dimensional flows. The first part of the collision scheme, which determines collision pairs, is presented following the derivation of the expression for the mean free path and using the cumulative distribution function. Approaches and conclusions based on one-dimensional flows are not always directly applicable to two- and three-dimensional flows. We investigated SBT correctness by using the two-dimensional pressure-driven gas flow of monoatomic gas as a test case. We studied the influence of shuffling of the list of particles per cell (PPC) before the collision scheme’s execution, as well as the minimal and maximal number of PPC, on the correctness of the solution. The investigation showed that shuffling and the number of PPC played an important role in the correctness of SBT. Our recommendations are straightforwardly applicable to three-dimensional flows. Finally, we considered the mixing of two gases and compared the results available in the literature.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3