AD−1 Small Molecule Improves Learning and Memory Function in Scopolamine-Induced Amnesic Mice Model through Regulation of CREB/BDNF and NF-κB/MAPK Signaling Pathway

Author:

Balakrishnan Rengasamy12ORCID,Park Ju-Young3,Cho Duk-Yeon4,Ahn Jae-Yong1,Yoo Dong-Sun4,Seol Sang-Ho4,Yoon Sung-Hwa3,Choi Dong-Kug12ORCID

Affiliation:

1. Department of Applied Life Science, Graduate School, BK21 Program, Konkuk University, Chungju 27478, Republic of Korea

2. Department of Biotechnology, College of Biomedical and Health Science, Research Institute of Inflammatory Disease (RID), Konkuk University, Chungju 27478, Republic of Korea

3. Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea

4. Research and Development, Sinil Pharmaceutical Co., Ltd., & APIMEDS Inc. Room 608 Namseong Plaza Building, Digital-ro 130 Geumcheon-gu, Seoul 08589, Republic of Korea

Abstract

Cognitive decline and memory impairment induced by oxidative brain damage are the critical pathological hallmarks of Alzheimer’s disease (AD). Based on the potential neuroprotective effects of AD−1 small molecule, we here explored the possible underlying mechanisms of the protective effect of AD-1 small molecule against scopolamine-induced oxidative stress, neuroinflammation, and neuronal apoptosis. According to our findings, scopolamine administration resulted in increased AChE activity, MDA levels, and decreased antioxidant enzymes, as well as the downregulation of the antioxidant response proteins of Nrf2 and HO-1 expression; however, treatment with AD−1 small molecule mitigated the generation of oxidant factors while restoring the antioxidant enzymes status, in addition to improving antioxidant protein levels. Similarly, AD−1 small molecule significantly increased the protein expression of neuroprotective markers such as BDNF and CREB and promoted memory processes in scopolamine-induced mice. Western blot analysis showed that AD−1 small molecule reduced activated microglia and astrocytes via the attenuation of iba-1 and GFAP protein expression. We also found that scopolamine enhanced the phosphorylation of NF-κB/MAPK signaling and, conversely, that AD−1 small molecule significantly inhibited the phosphorylation of NF-κB/MAPK signaling in the brain regions of hippocampus and cortex. We further found that scopolamine promoted neuronal loss by inducing Bax and caspase-3 and reducing the levels of the antiapoptotic protein Bcl-2. In contrast, AD−1 small molecule significantly decreased the levels of apoptotic markers and increased neuronal survival. Furthermore, AD−1 small molecule ameliorated scopolamine-induced impairments in spatial learning behavior and memory formation. These findings revealed that AD−1 small molecule attenuated scopolamine-induced cognitive and memory dysfunction by ameliorating AChE activity, oxidative brain damage, neuroinflammation, and neuronal apoptosis.

Publisher

MDPI AG

Subject

Cell Biology,Clinical Biochemistry,Molecular Biology,Biochemistry,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3