Caffeic Acid Phenethyl Ester Loaded PEG–PLGA Nanoparticles Enhance Wound Healing in Diabetic Rats

Author:

Nasrullah Mohammed Z.ORCID

Abstract

Delayed wound healing is a serious complication of diabetes and a main reason for foot amputation. Caffeic acid phenethyl ester (CAPE) is a main active constituent of honeybee propolis with reported appealing pharmacological activities. In the current study, CAPE was loaded onto PEG–PLGA nanoparticles and showed a particle size of 198 ± 7.3 nm and polydispersity index of 0.43 ± 0.04. An in vivo study was performed to appraise the wound-healing activity of CAPE-loaded PEG–PLGA nanoparticles (CAPE-NPs) in diabetic rats. Wound closure was significantly accelerated in rats treated with CAPE-NPs. This was confirmed via histological examinations of skin tissues that indicated expedited healing and enhanced collagen deposition. This was accompanied by observed antioxidant activity as evidenced by the prevention of lipid peroxidation and the exhaustion of superoxide dismutase (SOD) and catalase (CAT) activities. In addition, CAPE-NPs showed superior anti-inflammatory activity as compared with the regular formula of CAPE, as they prevented the expression of interleukin-6 (IL-6) as well as tumor necrosis-alpha (TNF-α). The pro-collagen actions of CAPE-NPs were highlighted by the enhanced hyroxyproline content and up-regulation of Col 1A1 mRNA expression. Furthermore, the immunohistochemial assessment of skin tissues indicated that CAPE-NPs enhance proliferation and angiogenesis, as shown by the increased expression of transforming growth factor β1 (TGF-β1) and platelet-derived growth factor subunit B (PDGF-B). In conclusion, CAPE-loaded PEG–PLGA nanoparticles possess potent healing effects in diabetic wounds. This is mediated, at least partially, by its antioxidant, anti-inflammatory, and pro-collagen as well as angiogenic activities.

Funder

the Institutional Fund Projects

Publisher

MDPI AG

Subject

Cell Biology,Clinical Biochemistry,Molecular Biology,Biochemistry,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3