Nrf2 as a Therapeutic Target in the Resistance to Targeted Therapies in Melanoma

Author:

Cucci Marie Angèle1,Grattarola Margherita1,Monge Chiara2,Roetto Antonella3ORCID,Barrera Giuseppina1,Caputo Emilia4,Dianzani Chiara2ORCID,Pizzimenti Stefania1ORCID

Affiliation:

1. Department of Clinical and Biological Science, University of Turin, Corso Raffaello 30, 10125 Turin, Italy

2. Department of Scienza e Tecnologia del Farmaco, University of Turin, Via Pietro Giuria 9, 10125 Turin, Italy

3. Department of Clinical and Biological Sciences—San Luigi Gonzaga Hospital, University of Turin, Regione Gonzole 10, 10043 Orbassano, Turin, Italy

4. Institute of Genetics and Biophysics-IGB-CNR, “A. Buzzati-Traverso”, Via Pietro Castellino 111, 80131 Naples, Italy

Abstract

The use of specific inhibitors towards mutant BRAF (BRAFi) and MEK (MEKi) in BRAF-mutated patients has significantly improved progression-free and overall survival of metastatic melanoma patients. Nevertheless, half of the patients still develop resistance within the first year of therapy. Therefore, understanding the mechanisms of BRAFi/MEKi-acquired resistance has become a priority for researchers. Among others, oxidative stress-related mechanisms have emerged as a major force. The aim of this study was to evaluate the contribution of Nrf2, the master regulator of the cytoprotective and antioxidant response, in the BRAFi/MEKi acquired resistance of melanoma. Moreover, we investigated the mechanisms of its activity regulation and the possible cooperation with the oncogene YAP, which is also involved in chemoresistance. Taking advantage of established in vitro melanoma models resistant to BRAFi, MEKi, or dual resistance to BRAFi/MEKi, we demonstrated that Nrf2 was upregulated in melanoma cells resistant to targeted therapy at the post-translational level and that the deubiquitinase DUB3 participated in the control of the Nrf2 protein stability. Furthermore, we found that Nrf2 controlled the expression of YAP. Importantly, the inhibition of Nrf2, directly or through inhibition of DUB3, reverted the resistance to targeted therapies.

Funder

University of Turin, Department of Clinical and Biological Sciences

Department of Sciences and Pharmaceutical Technology

Publisher

MDPI AG

Subject

Cell Biology,Clinical Biochemistry,Molecular Biology,Biochemistry,Physiology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Nrf2 protein in melanoma progression, as a new means of treatment;Pigment Cell & Melanoma Research;2023-09-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3