TRPV4 Role in Neuropathic Pain Mechanisms in Rodents

Author:

Rodrigues Patrícia,Ruviaro Náthaly Andrighetto,Trevisan GabrielaORCID

Abstract

Neuropathic pain is a chronic pain caused by a disease or damage to the somatosensory nervous system. The knowledge about the complete mechanisms is incomplete, but the role of oxidative compounds has been evaluated. In this context, we highlight the transient potential receptor vanilloid 4 (TRPV4), a non-selective cation channel, that can be activated by oxidated compounds. In clinical trials, the TRPV4 antagonist (GSK2798745) has been well-tolerated in healthy volunteers. The TRPV4 activation by oxidative compounds, such as hydrogen peroxide (H2O2) and nitric oxide (NO), has been researched in neuropathic pain models. Thus, the modulation of TRPV4 activation by decreasing oxidated compounds could represent a new pharmacological approach for neuropathic pain treatment. Most models evaluated the TRPV4 using knockout mice, antagonist or antisense treatments and detected mechanical allodynia, hyposmotic solution-induced nociception and heat hyperalgesia, but this channel is not involved in cold allodynia. Only H2O2 and NO were evaluated as TRPV4 agonists, so one possible target to reduce neuropathic pain should focus on reducing these compounds. Therefore, this review outlines how the TRPV4 channel represents an innovative target to tackle neuropathic pain signaling in models induced by trauma, surgery, chemotherapy, cancer, diabetes and alcohol intake.

Funder

Conselho Nacional de Desenvolvimento Científico

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

Publisher

MDPI AG

Subject

Cell Biology,Clinical Biochemistry,Molecular Biology,Biochemistry,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3