1,3-Butanediol Administration Increases β-Hydroxybutyrate Plasma Levels and Affects Redox Homeostasis, Endoplasmic Reticulum Stress, and Adipokine Production in Rat Gonadal Adipose Tissue

Author:

Panico Giuliana1,Fasciolo Gianluca1ORCID,Migliaccio Vincenzo2ORCID,De Matteis Rita3ORCID,Lionetti Lillà2ORCID,Napolitano Gaetana4ORCID,Agnisola Claudio1,Venditti Paola1ORCID,Lombardi Assunta1

Affiliation:

1. Department of Biology, University of Naples Federico II, Complesso Monte Sant’Angelo Via Cintia 26, 80126 Napoli, Italy

2. Department of Chemistry and Biology “A. Zambelli”, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy

3. Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy

4. Department of Science and Technology, Parthenope University of Naples, 80143 Naples, Italy

Abstract

Ketone bodies (KBs) are an alternative energy source under starvation and play multiple roles as signaling molecules regulating energy and metabolic homeostasis. The mechanism by which KBs influence visceral white adipose tissue physiology is only partially known, and our study aimed to shed light on the effects they exert on such tissue. To this aim, we administered 1,3-butanediol (BD) to rats since it rapidly enhances β-hydroxybutyrate serum levels, and we evaluated the effect it induces within 3 h or after 14 days of treatment. After 14 days of treatment, rats showed a decrease in body weight gain, energy intake, gonadal-WAT (gWAT) weight, and adipocyte size compared to the control. BD exerted a pronounced antioxidant effect and directed redox homeostasis toward reductive stress, already evident within 3 h after its administration. BD lowered tissue ROS levels and oxidative damage to lipids and proteins and enhanced tissue soluble and enzymatic antioxidant capacity as well as nuclear erythroid factor-2 protein levels. BD also reduced specific mitochondrial maximal oxidative capacity and induced endoplasmic reticulum stress as well as interrelated processes, leading to changes in the level of adipokines/cytokines involved in inflammation, macrophage infiltration into gWAT, adipocyte differentiation, and lipolysis.

Funder

University of Naples Federico II Programma per il finanziamento della ricerca di Ateneo—Linea B

Publisher

MDPI AG

Subject

Cell Biology,Clinical Biochemistry,Molecular Biology,Biochemistry,Physiology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3