Affiliation:
1. Department of Molecular Medicine, Inflammation-Cancer Microenvironment Research Center, School of Medicine, Ewha Womans University, Seoul 07804, Republic of Korea
2. Department of Brain & Cognitive Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
Abstract
This study aims to investigate the neuroprotective effects of nootkatone (NKT), a sesquiterpenoid compound isolated from grapefruit, in an MPTP-induced Parkinson’s disease (PD) mouse model. NKT restored MPTP-induced motor impairment and dopaminergic neuronal loss and increased the expression of neurotrophic factors like BDNF, GDNF, and PGC-1α. In addition, NKT inhibited microglial and astrocyte activation and the expression of pro-inflammatory markers like iNOS, TNF-α, and IL-1β and oxidative stress markers like 4-HNE and 8-OHdG. NKT increased the expression of nuclear factor erythroid 2-related factor 2 (Nrf2)-driven antioxidant enzymes like HO-1 and NQO-1 in astrocytes, but not in neurons or microglia in MPTP-treated mice. To investigate whether Nrf2 mediates the anti-inflammatory, antioxidant, or neuroprotective effects of NKT, mice were pretreated with Nrf2-specific inhibitor brusatol (BT) prior to NKT treatment. BT attenuated the NKT-mediated inhibition of 4-HNE and 8-OHdG and the number of Nrf2+/HO-1+/NQO1+ cells co-localized with GFAP+ astrocytes in the substantia nigra of MPTP-treated mice. In addition, BT reversed the effects of NKT on dopaminergic neuronal cell death, neurotrophic factors, and pro-/anti-inflammatory cytokines in MPTP-treated mice. Collectively, these data suggest that astrocytic Nrf2 and its downstream antioxidant molecules play pivotal roles in mediating the neuroprotective and anti-inflammatory effects of NKT in an MPTP-induced PD mouse model.
Funder
National Research Foundation of Korea
Subject
Cell Biology,Clinical Biochemistry,Molecular Biology,Biochemistry,Physiology
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献