A Peptoid-Chelator Selective to Cu2+ That Can Extract Copper from Metallothionein-2 and Lead to the Production of ROS

Author:

Behar Anastasia Esther1ORCID,Maayan Galia1ORCID

Affiliation:

1. Schulich Faculty of Chemistry, Technion-Israel Institute of Technology Technion City, Haifa 3200008, Israel

Abstract

Copper is an essential metal ion that is involved in critical cellular processes, but which can also exhibit toxic effects through its ability to catalyze reactive oxygen species (ROS) formation. Dysregulation of copper homeostasis has been implicated in the progression of several diseases, including cancer. A novel therapeutic approach, extensively studied in recent years, is to capitalize on the increased copper uptake and dependency exhibited by cancer cells and to promote copper-associated ROS production within the tumor microenvironment, leading to the apoptosis of cancer cells. Such an effect can be achieved by selectively chelating copper from copper-bearing metalloproteins in cancer cells, thereby forming a copper–chelator complex that produces ROS and, through this, induces oxidative stress and initiates apoptosis. Herein, we describe a peptoid chelator, TB, that is highly suitable to carry this task. Peptoids are N-substituted glycine oligomers that can be efficiently synthesized on a solid support and are also biocompatible; thus, they are considered promising drug candidates. We show, by rigorous spectroscopic techniques, that TB is not only selective for Cu(II) ions, but can also effectively extract copper from metallothionein-2, and the formed complex CuTB can promote ROS production. Our findings present a promising first example for the future development of peptoid-based chelators for applications in anti-cancer chelation therapy, highlighting the potential for the prospect of peptoid chelators as therapeutics.

Funder

Lamb Research Foundation for Alzheimer’s Disease

Publisher

MDPI AG

Subject

Cell Biology,Clinical Biochemistry,Molecular Biology,Biochemistry,Physiology

Reference80 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3