Extracellular Vesicles and Their Renin–Angiotensin Cargo as a Link between Metabolic Syndrome and Parkinson’s Disease

Author:

Pedrosa Maria A.12,Labandeira Carmen M.3ORCID,Lago-Baameiro Nerea4,Valenzuela Rita12ORCID,Pardo Maria45,Labandeira-Garcia Jose Luis12ORCID,Rodriguez-Perez Ana I.12ORCID

Affiliation:

1. Cellular and Molecular Neurobiology of Parkinson’s Disease, Research Center for Molecular Medicine and Chronic Diseases (CIMUS), Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain

2. Networking Research Center on Neurodegenerative Diseases (CIBERNED), 28029 Madrid, Spain

3. Neurology Service, University Hospital of Ourense, 32005 Ourense, Spain

4. Grupo Obesidómica, Área de Endocrinología, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Complexo Hospitalario Universitario de Santiago de Compostela/SERGAS, 15706 Santiago de Compostela, Spain

5. CIBER Fisiopatología Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain

Abstract

Several studies showed an association between metabolic syndrome (MetS) and Parkinson’s disease (PD). The linking mechanisms remain unclear. MetS promotes low-grade peripheral oxidative stress and inflammation and dysregulation of the adipose renin–angiotensin system (RAS). Interestingly, brain RAS dysregulation is involved in the progression of dopaminergic degeneration and PD. Circulating extracellular vesicles (EVs) from MetS fat tissue can cross the brain–blood barrier and may act as linking signals. We isolated and characterized EVs from MetS and control rats and analyzed their mRNA and protein cargo using RT-PCR and the ExoView R200 platform, respectively. Furthermore, cultures of the N27 dopaminergic cell line and the C6 astrocytic cell line were treated with EVs from MetS rats. EVs were highly increased in MetS rat serum, which was inhibited by treatment of the rats with the angiotensin type-1-receptor blocker candesartan. Furthermore, EVs from MetS rats showed increased pro-oxidative/pro-inflammatory and decreased anti-oxidative/anti-inflammatory RAS components, which were inhibited in candesartan-treated MetS rats. In cultures, EVs from MetS rats increased N27 cell death and modulated C6 cell function, upregulating markers of neuroinflammation and oxidative stress, which were inhibited by the pre-treatment of cultures with candesartan. The results from rat models suggest EVs and their RAS cargo as a mechanism linking Mets and PD.

Funder

Spanish Ministry of Science and Innovation

Instituto de Salud Carlos III

CIBERNED, Galician Government

European Union

Publisher

MDPI AG

Subject

Cell Biology,Clinical Biochemistry,Molecular Biology,Biochemistry,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3