Affiliation:
1. Chemical Engineering and Food Technology Department, Science Faculty, Wine and Agrifood Research Institute (IVAGRO), University of Cadiz, Puerto Real, 11510 Cadiz, Spain
Abstract
The addition of naturally active compounds to implantable polymers is an efficient strategy against inflammation issues that might lead to rejection, while promoting controlled re-endothelialization of the tissues. This work proposes the use of winemaking by-products with high active properties of biomedical interest to obtain bioactive PLA by using supercritical technologies. First, two red grape pomace extracts, obtained by high-pressure extraction with supercritical CO2 and cosolvents (either ethanol or water–ethanol), have been studied. Second, two impregnation methods have been studied with both extracts, traditional supercritical CO2-assisted impregnation (SSI) and a novel pressurized soaking method (PSI). The amount of extract impregnated as well as the bioactivity levels achieved—i.e., antioxidant, antimicrobial, and anti-inflammatory properties— have been determined for each extract and impregnation method at different pressure and temperature conditions. Both extracts obtained had good antioxidant, anti-inflammatory, and antibacterial capacities, especially the hydroethanolic one (0.50 ± 0.03 mg TE/g versus 0.24 ± 0.03 mg TE/g, respectively). Regarding impregnated filaments, impregnation loadings depended especially on the extract and P/T conditions, providing up to 8% (extract mass/polymer mass) of impregnation. The antioxidant capacity increased noteworthily by using the ethanolic extract by PSI, with values near 100 µg TE/g PLA.
Subject
Cell Biology,Clinical Biochemistry,Molecular Biology,Biochemistry,Physiology
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献