Aldo-Keto Reductase 1C15 Characterization and Protection in Ischemic Brain Injury

Author:

Yang Tuo12ORCID,Li Qianqian12,Fadoul George12,Alraqmany Nour12,Ikonomovic Milos134,Zhang Feng12

Affiliation:

1. Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15216, USA

2. Pittsburgh Institute of Brain Disorders and Recovery, University of Pittsburgh, Pittsburgh, PA 15216, USA

3. Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15216, USA

4. Geriatric Research Education and Clinical Center, VA Pittsburgh Healthcare System, Pittsburgh, PA 15240, USA

Abstract

Aldo-keto reductase (AKR) 1C15, a member of the AKR superfamily, was recently identified and cloned, and reported to alleviate oxidative stress in endothelial cells in rodent lungs. However, its expression and role in the brain and ischemic brain diseases have not been investigated. AKR1C15 expression was detected with real-time PCR. Mouse ischemic stroke and ischemic preconditioning (IPC) were established with middle cerebral artery occlusion (MCAO) for 1 h or 12 min, respectively. Recombinant AKR1C15 was administered intraperitoneally, and stroke outcome was evaluated with neurobehavioral tests and infarct volumes. Rat primary brain cell cultures were subjected to oxygen–glucose deprivation (OGD) to mimic ischemic injury. Cell survival or in vitro blood–brain barrier (BBB) permeability was measured, and nitric oxide (NO) release was detected. Immunostaining and Western blotting were used to evaluate oxidative-stress-related protein expression. AKR1C15 administration decreased the infarct volume and neurological deficits 2d post-stroke, and its early (1-h) administration after IPC abolished the protection of IPC against stroke. In rat primary brain cell cultures, AKR1C15 was most abundantly expressed in brain microvascular endothelial cells (BMVECs) and microglia. Its expression decreased upon OGD in most cell types except for BMVECs and microglia. In primary neuronal cultures, AKR1C15 treatment prevented OGD-induced cell death accompanied by decreased levels of 4-hydroxynonenal, 8-hydroxy-2′-deoxyguanosine, and heme oxygenase-1. In BMVEC cultures, AKR1C15 treatment protected against OGD-induced cell death and in vitro BBB leakage. In primary microglial cultures, AKR1C15 reduced the release of NO upon proinflammatory stimulation. Our results provide a characterization of the novel antioxidant AKR1C15 and demonstrate its protective role against ischemic injury, both in vivo and in vitro. AKR1C15 may be a promising agent for ischemic stroke treatment.

Funder

National Institutes of Health

Pittsburgh Institute of Brain Disorders and Recovery

Department of Neurology of the University of Pittsburgh

Publisher

MDPI AG

Subject

Cell Biology,Clinical Biochemistry,Molecular Biology,Biochemistry,Physiology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3