DHA and EPA Alleviate Epileptic Depression in PTZ-Treated Young Mice Model by Inhibiting Neuroinflammation through Regulating Microglial M2 Polarization and Improving Mitochondrial Metabolism

Author:

Yang Yueqi1,Chen Lu1,Zhang Ning1,Zhao Yingcai2,Che Hongxia3,Wang Yuming2,Zhang Tiantian2ORCID,Wen Min14

Affiliation:

1. Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, China

2. College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China

3. College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, China

4. Pet Nutrition Research and Development Center Gambol Pet Group Co., Ltd., Liaocheng 252000, China

Abstract

Depression is the most common complication of childhood epilepsy, leading to a poor prognosis for seizure control and poor quality of life. However, the molecular mechanisms underlying epileptic depression have not been completely elucidated. Increasing evidence suggests that oxidative stress and neuroinflammation are major contributors to depression. The positive effects of dietary supplementation with docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) on depression have been previously reported. However, knowledge regarding the effects of EPA and DHA in managing depressive symptoms in pediatric patients with epilepsy is limited. Therefore, this study aims to investigate the effects of EPA and DHA on epileptic depression in a pentylenetetrazole (PTZ)-treated young mouse model. Three-week-old mice were fed a DHA- or EPA-enriched diet for 21 days and treated with PTZ (35 mg/kg, i.p.) every other day for a total of 10 times. EPA was more effective than DHA at alleviating PTZ-induced depressive symptoms. Pathological results revealed that DHA and EPA significantly improved neuronal degeneration in the hippocampus. Analysis of the mechanism revealed that DHA and EPA mitigated PTZ-induced myelin damage by increasing the protein levels of CNPase, Olig2, and MBP. Furthermore, both DHA and EPA reduced neuroinflammation by promoting microglial M2 polarization and suppressing the LCN2-NLRP3 inflammasome pathway. Notably, EPA polarized microglia towards the M2 phenotype. In addition, DHA and EPA decreased oxidative stress by inhibiting NOX2 and enhancing mitochondrial metabolism through the increased expression of mitochondrial respiratory chain complex I-V proteins. These findings suggest that DHA and EPA can be used as effective interventions to improve depression in children with epilepsy, with EPA being a particularly favorable option.

Funder

Natural Science Foundation of Shandong province

Guangyue Young Scholar Innovation Team of Liaocheng University

Open Project of Liaocheng University Animal Husbandry Discipline

China Postdoctoral Science Foundation

Publisher

MDPI AG

Subject

Cell Biology,Clinical Biochemistry,Molecular Biology,Biochemistry,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3