Disruption of Bacterial Thiol-Dependent Redox Homeostasis by Magnolol and Honokiol as an Antibacterial Strategy

Author:

Ouyang Yanfang1,Tang Xuewen1,Zhao Ying1ORCID,Zuo Xin1,Ren Xiaoyuan2ORCID,Wang Jun3ORCID,Zou Lili3ORCID,Lu Jun1ORCID

Affiliation:

1. Engineering Research Center of Coptis Development and Utilization/Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education (Southwest University), College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China

2. Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77 Stockholm, Sweden

3. Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Sciences, China Three Gorges University, Yichang 443002, China

Abstract

Some traditional Chinese medicines (TCMs) possess various redox-regulation properties, but whether the redox regulation contributes to antibacterial mechanisms is not known. Here, ginger juice processed Magnoliae officinalis cortex (GMOC) was found to show strong antibacterial activities against some Gram-positive bacteria, but not Gram-negative bacteria including E. coli, while the redox-related transcription factor oxyR deficient E. coli mutant was sensitive to GMOC. In addition, GMOC and its main ingredients, magnolol and honokiol, exhibited inhibitory effects on the bacterial thioredoxin (Trx) system, a major thiol-dependent disulfide reductase system in bacteria. The effects of magnolol and honokiol on cellular redox homeostasis were further verified by elevation of the intracellular ROS levels. The therapeutic efficacies of GMOC, magnolol and honokiol were further verified in S. aureus-caused mild and acute peritonitis mouse models. Treatments with GMOC, magnolol and honokiol significantly reduced the bacterial load, and effectively protected the mice from S. aureus-caused peritonitis infections. Meanwhile, magnolol and honokiol produced synergistic effects when used in combination with several classic antibiotics. These results strongly suggest that some TCMs may exert their therapeutic effects via targeting the bacterial thiol-dependent redox system.

Funder

Key Project of Innovation Research 2035 Pilot Plan of Southwest University

Chinese Medicine Rehabilitation—the Key Discipline Constructed by Chongqing Health Bureau

Hundred Talents Plan of Chongqing and Southwest University ‘Gathering Talent Project’

Natural Science Foundation of Chongqing

National Natural Science Foundation of China

Chongqing Innovation and Entrepreneurship Program for Overseas Returnee

Publisher

MDPI AG

Subject

Cell Biology,Clinical Biochemistry,Molecular Biology,Biochemistry,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3