Characterization of Antioxidant and α-Glucosidase Inhibitory Compounds of Cratoxylum formosum ssp. pruniflorum and Optimization of Extraction Condition

Author:

An Heewon1,Thanh Le Nguyen23ORCID,Khanh Le Quoc4,Ryu Se Hwan1,Lee Solip1,Yeon Sang Won1,Lee Hak Hyun1,Turk Ayman1,Lee Ki Yong5ORCID,Hwang Bang Yeon1,Lee Mi Kyeong1ORCID

Affiliation:

1. College of Pharmacy, Chungbuk National University, Cheongju 28160, Republic of Korea

2. Department of Medicinal Chemistry Technology, Institute of Marine Biochemistry, Vietnam Academy of Science & Technology (VAST), Hanoi 10000, Vietnam

3. Graduate University of Science and Technology, VAST, Hanoi 10000, Vietnam

4. Hatinh Pharmaceutical Company (HADIPHAR), Ha Tinh 45000, Vietnam

5. College of Pharmacy, Korea University, Sejong 47236, Republic of Korea

Abstract

Cratoxylum formosum ssp. pruniflorum (Kurz.) Gogel (Guttiferae), called kuding tea, is widely distributed in Southeast Asia. In this study, the constituents and biological activity of C. formosum ssp. pruniflorum were investigated. Extract of its leaves, roots and stems showed antioxidant and α-glucosidase inhibitory activity. Interestingly, comparison of the metabolite profiles of leaves, roots and stems of C. formosum ssp. pruniflorum by LC-MS analysis showed a great difference between the roots and leaves, whereas the roots and stems were quite similar. Purification of the roots and leaves of C. formosum ssp. pruniflorum through various chromatographic techniques resulted in the isolation of 25 compounds. The structures of isolated compounds were elucidated on the basis of spectroscopic analysis as 18 xanthones, 5 flavonoids, a benzophenone and a phenolic compound. Among them, a xanthone (16) and a benzophenone (19) were first reported from nature. Evaluation of biological activity revealed that xanthones had a potent α-glucosidase inhibitory activity, while flavonoids were responsible for the antioxidant activity. To maximize the biological activity, yield and total phenolic content of C. formosum ssp. pruniflorum, extraction conditions such as extraction solvent, time and temperature were optimized using response surface methodology with Box–Behnken Design (BBD). Regression analysis showed a good fit of the experimental data, and the optimal condition was obtained as MeOH concentration in EtOAc, 88.1%; extraction time, 6.02 h; and extraction temperature 60.0 °C. α-Glucosidase inhibitory activity, yield and total phenolic content under the optimal condition were found to be 72.2% inhibition, 10.3% and 163.9 mg GAE/g extract, respectively. These results provide useful information about C. formosum ssp. pruniflorum as functional foods for oxidative stress–related metabolic diseases.

Funder

National Research Foundation of Korea

Medical Research Center Program

Publisher

MDPI AG

Subject

Cell Biology,Clinical Biochemistry,Molecular Biology,Biochemistry,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3