Ruta graveolens: Boost Melanogenic Effects and Protection against Oxidative Damage in Melanocytes

Author:

Ainiwaer Pazilaiti12,Li Zuopeng1,Zang Deng1,Jiang Lan1,Zou Guoan12ORCID,Aisa Haji Akber12ORCID

Affiliation:

1. State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Key Laboratory of Plants Resources and Chemistry of Arid Zone, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, South Beijing Road 40-1, Urumqi 830011, China

2. University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Beijing 100049, China

Abstract

Vitiligo, an acquired depigmentation disorder, is characterized by the loss of functional melanocytes and epidermal melanin. In recent years, research has focused on promoting melanin biosynthesis and protecting melanocytes to reduce stress-related damage for the purpose of applying it to vitiligo treatment. Ruta graveolens L. has been utilized as a medicinal herb in diverse traditional medicine systems to address conditions like vitiligo. In this investigation, we isolated and purified 16 unique alkaloid compounds from the chloroform extracts of R. graveolens, encompassing a new quinoline alkaloid and several recognized compounds. Bioactivity analysis showed that compound 13, an alkaloid derived from R. graveolens, promotes melanin production while protecting PIG3V melanocytes against 4-tert-butylphenol (4-TBP)-induced oxidative damage by downregulating endoplasmic reticulum (ER) stress and pro-inflammatory cytokines through interleukin-6 (IL-6) regulation. Additionally, the compound suppressed the expression of Bip, IRE1, p-IRE1, and XBP-1 proteins, suggesting a potential antioxidant function. These findings suggest that compound 13 isolated from R. graveolens can augment melanogenesis in melanocytes, reduce endoplasmic reticulum (ER) stress, and ameliorate vitiligo exacerbation. The melanogenic activity observed in the chloroform fraction emphasizes R. graveolens’s potential as a novel therapeutic target for vitiligo treatment, warranting further exploration in future studies.

Funder

Natural Science Program

West Light Foundation of the Chinese Academy of Sciences

Youth Innovation Promotion Association CAS

Publisher

MDPI AG

Subject

Cell Biology,Clinical Biochemistry,Molecular Biology,Biochemistry,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3