Antioxidant Properties of Thymoquinone, Thymohydroquinone and Black Cumin (Nigella sativa L.) Seed Oil: Scavenging of Superoxide Radical Studied Using Cyclic Voltammetry, DFT and Single Crystal X-ray Diffraction

Author:

Sakib Raiyan1,Caruso Francesco1,Aktar Sandjida1,Belli Stuart1,Kaur Sarjit1,Hernandez Melissa1,Rossi Miriam1ORCID

Affiliation:

1. Department of Chemistry, Vassar College, Poughkeepsie, NY 12604, USA

Abstract

Black cumin seeds and seed oil have long been used in traditional foods and medicine in South Asian, Middle Eastern and Mediterranean countries and are valuable flavor ingredients. An important ingredient of black cumin is the small molecule thymoquinone (TQ), which manifests low toxicity and potential therapeutic activity against a wide number of diseases including diabetes, cancer and neurodegenerative disorders. In this study, the antioxidant activities of black seed oil, TQ and a related molecule found in black cumin, thymohydroquinone (THQ), were measured using a direct electrochemical method to experimentally evaluate their superoxide scavenging action. TQ and the black seed oil showed good superoxide scavenging ability, while THQ did not. Density Functional Theory (DFT) computational methods were applied to arrive at a chemical mechanism describing these results, and confirmed the experimental Rotating Ring Disk Electrode (RRDE) findings that superoxide oxidation to O2 by TQ is feasible, in contrast with THQ, which does not scavenge superoxide. Additionally, a thorough inquiry into the unusual cyclic voltammetry pattern exhibited by TQ was studied and was associated with formation of a 1:1 TQ-superoxide radical species, [TQ-O2]−•. DFT calculations reveal this radical species to be involved in the π-π mechanism describing TQ reactivity with superoxide. The crystal structures of TQ and THQ were analyzed, and the experimental data reveal the presence of stacking intermolecular interactions that can be associated with formation of the radical species, [TQ-O2]−•. All three of these methods were essential for us to arrive at a chemical mechanism that explains TQ antioxidant activity, that incorporates intermolecular features found in the crystal structure and which correlates with the measured superoxide scavenging activity.

Funder

NSF

Publisher

MDPI AG

Subject

Cell Biology,Clinical Biochemistry,Molecular Biology,Biochemistry,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3