Enhanced Resistance of atnigr1 against Pseudomonas syringae pv. tomato Suggests Negative Regulation of Plant Basal Defense and Systemic Acquired Resistance by AtNIGR1 Encoding NAD(P)-Binding Rossmann-Fold in Arabidopsis thaliana

Author:

Al Azzawi Tiba Nazar1,Khan Murtaza2ORCID,Mun Bong-Gyu1,Lee Sang-Uk1ORCID,Imran Muhammad3ORCID,Hussain Adil4ORCID,Rolly Nkulu Kabange5ORCID,Lee Da-Sol1,Ali Sajid2ORCID,Lee In-Jung1,Yun Byung-Wook1ORCID

Affiliation:

1. Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea

2. Department of Horticulture and Life Sciences, Yeungnam University, Gyeongsan 38541, Republic of Korea

3. Biosafety Division, National Institute of Agriculture Science, Rural Development Administration, Jeonju 55365, Republic of Korea

4. Department of Entomology, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan

5. Department of Southern Area of Crop Science, National Institute of Crop Science, RDA, Miryang 50424, Republic of Korea

Abstract

Nitric oxide (NO) regulates several biological and physiological processes in plants. This study investigated the role of Arabidopsis thaliana Negative Immune and Growth Regulator 1 (AtNIGR1), encoding an NAD(P)-binding Rossmann-fold superfamily, in the growth and immunity of Arabidopsis thaliana. AtNIGR1 was pooled from the CySNO transcriptome as a NO-responsive gene. Seeds of the knockout (atnigr1) and overexpression plants were evaluated for their response to oxidative [(hydrogen peroxide (H2O2) and methyl viologen (MV)] or nitro-oxidative [(S-nitroso-L-cysteine (CySNO) and S-nitroso glutathione (GSNO)] stress. Results showed that the root and shoot growth of atnigr1 (KO) and AtNIGR1 (OE) exhibited differential phenotypic responses under oxidative and nitro-oxidative stress and normal growth conditions. To investigate the role of the target gene in plant immunity, the biotrophic bacterial pathogen Pseudomonas syringae pv. tomato DC3000 virulent (Pst DC3000 vir) was used to assess the basal defense, while the Pst DC3000 avirulent (avrB) strain was used to investigate R-gene-mediated resistance and systemic acquired resistance (SAR). Data revealed that AtNIGR1 negatively regulated basal defense, R-gene-mediated resistance, and SAR. Furthermore, the Arabidopsis eFP browser indicated that the expression of AtNIGR1 is detected in several plant organs, with the highest expression observed in germinating seeds. All results put together suggest that AtNIGR1 could be involved in plant growth, as well as basal defense and SAR, in response to bacterial pathogens in Arabidopsis.

Funder

Ministry of Education

Publisher

MDPI AG

Subject

Cell Biology,Clinical Biochemistry,Molecular Biology,Biochemistry,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3