Molecular Mechanisms of Resistance to Ionizing Radiation in S. cerevisiae and Its Relationship with Aging, Oxidative Stress, and Antioxidant Activity
-
Published:2023-08-30
Issue:9
Volume:12
Page:1690
-
ISSN:2076-3921
-
Container-title:Antioxidants
-
language:en
-
Short-container-title:Antioxidants
Author:
González-Vidal Alejandro12ORCID, Mercado-Sáenz Silvia23ORCID, Burgos-Molina Antonio M.24ORCID, Alamilla-Presuel Juan C.1ORCID, Alcaraz Miguel5ORCID, Sendra-Portero Francisco12ORCID, Ruiz-Gómez Miguel J.12ORCID
Affiliation:
1. Departamento de Radiología y Medicina Física, Facultad de Medicina, Universidad de Málaga, 29010 Málaga, Spain 2. Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA Plataforma BIONAND), Parque Tecnológico de Andalucía (PTA), 29590 Málaga, Spain 3. Departamento de Fisiología Humana, Histología Humana, Anatomía Patológica y Educación Físico Deportiva, Facultad de Medicina, Universidad de Málaga, 29010 Málaga, Spain 4. Departamento de Especialidades Quirúrgicas, Bioquímica e Inmunología, Facultad de Medicina, Universidad de Málaga, 29010 Málaga, Spain 5. Departamento de Radiología y Medicina Física, Facultad de Medicina, Universidad de Murcia, 30100 Murcia, Spain
Abstract
The repair of the damage produced to the genome and proteome by the action of ionizing radiation, oxidizing agents, and during aging is important to maintain cellular homeostasis. Many of the metabolic pathways influence multiple processes. In this way, this work aims to study the relationship between resistance/response to ionizing radiation, cellular aging, and the response mechanisms to oxidative stress, free radicals, reactive oxygen species (ROS), and antioxidant activity in the yeast S. cerevisiae. Systems biology allows us to use tools that reveal the molecular mechanisms common to different cellular response phenomena. The results found indicate that homologous recombination, non-homologous end joining, and base excision repair pathways are the most important common processes necessary to maintain cellular homeostasis. The metabolic routes of longevity regulation are those that jointly contribute to the three phenomena studied. This study proposes eleven common biomarkers for response/resistance to ionizing radiation and aging (EXO1, MEC1, MRE11, RAD27, RAD50, RAD51, RAD52, RAD55, RAD9, SGS1, YKU70) and two biomarkers for response/resistance to radiation and oxidative stress, free radicals, ROS, and antioxidant activity (NTG1, OGG1). In addition, it is important to highlight that the HSP104 protein could be a good biomarker common to the three phenomena studied.
Subject
Cell Biology,Clinical Biochemistry,Molecular Biology,Biochemistry,Physiology
Reference30 articles.
1. Nuclear clusterin/XIP8, an x-ray-induced Ku70-binding protein that signals cell death;Yang;Proc. Natl. Acad. Sci. USA,2000 2. Sagkrioti, E., Biz, G.M., Takan, I., Asfa, S., Nikitaki, Z., Zanni, V., Kars, R.H., Hellweg, C.E., Azzam, E.I., and Logotheti, S. (2022). Radiation Type- and Dose-Specific Transcriptional Responses across Healthy and Diseased Mammalian Tissues. Antioxidants, 11. 3. The downfall of the linear non-threshold model;Rev. Española Med. Nuclear Imag. Mol.,2020 4. Differential usage of non-homologous end-joining and homologous recombination in double strand break repair;Sonoda;DNA Repair,2006 5. Post-replication repair in DT40 cells: Translesion polymerases versus recombinases;Hochegger;Bioessays,2004
|
|