Molecular Design of Interfaces of Model Food Nanoemulsions: A Combined Experimental and Theoretical Approach

Author:

Martínez-Senra Tamara1,Losada-Barreiro Sonia1ORCID,Hermida-Ramón Jose M.1,Graña Ana M.1ORCID,Bravo-Díaz Carlos1ORCID

Affiliation:

1. Departamento Química-Física, Facultad de Química, Universidade de Vigo, 36310 Vigo, Spain

Abstract

The composition and structure of the interfacial region of emulsions frequently determine its functionality and practical applications. In this work, we have integrated theory and experiments to enable a detailed description of the location and orientation of antioxidants in the interfacial region of olive-oil-in-water nanoemulsions (O/W) loaded with the model gallic acid (GA) antioxidant. For the purpose, we determined the distribution of GA in the intact emulsions by employing the well-developed pseudophase kinetic model, as well as their oxidative stability. We also determined, by employing an in silico design, the radial distribution functions of GA to gain insights on its insertion depth and on its orientation in the interfacial region. Both theoretical and experimental methods provide comparable and complementary results, indicating that most GA is located in the interfacial region (~81.2%) with a small fraction in the aqueous (~18.82%). Thus, GA is an effective antioxidant to inhibit lipid oxidation in emulsions not only because of the energy required for its reaction with peroxyl radical is much lower than that between the peroxyl radical and the unsaturated lipid but also because its effective concentration in the interfacial region is much higher than the stoichiometric concentration. The results demonstrate that the hybrid approach of experiments and simulations constitutes a complementary and useful pathway to design new, tailored, functionalized emulsions to minimize lipid oxidation.

Publisher

MDPI AG

Subject

Cell Biology,Clinical Biochemistry,Molecular Biology,Biochemistry,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3