Affiliation:
1. State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai 200237, China
2. Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan
Abstract
Both catalase and peroxiredoxin show high activities of H2O2 decomposition and coexist in the same organism; however, their division of labor in defense against H2O2 is unclear. We focused on the major peroxiredoxin (PrxA) and catalase (CatB) in Aspergillus nidulans at different growth stages to discriminate their antioxidant roles. The dormant conidia lacking PrxA showed sensitivity to high concentrations of H2O2 (>100 mM), revealing that PrxA is one of the important antioxidants in dormant conidia. Once the conidia began to swell and germinate, or further develop to young hyphae (9 h to old age), PrxA-deficient cells (ΔprxA) did not survive on plates containing H2O2 concentrations higher than 1 mM, indicating that PrxA is an indispensable antioxidant in the early growth stage. During these early growth stages, absence of CatB did not affect fungal resistance to either high (>1 mM) or low (<1 mM) concentrations of H2O2. In the mature hyphae stage (24 h to old age), however, CatB fulfills the major antioxidant function, especially against high doses of H2O2. PrxA is constitutively expressed throughout the lifespan, whereas CatB levels are low in the early growth stage of the cells developing from swelling conidia to early growth hyphae, providing a molecular basis for their different contributions to H2O2 resistance in different growth stages. Further enzyme activity and cellular localization analysis indicated that CatB needs to be secreted to be functionalized, and this process is confined to the growth stage of mature hyphae. Our results revealed differences in effectiveness and timelines of two primary anti-H2O2 enzymes in fungus.
Funder
National Natural Science Foundation of China
International S&T Innovation Cooperation Key Project
Subject
Cell Biology,Clinical Biochemistry,Molecular Biology,Biochemistry,Physiology
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献