Affiliation:
1. Department of Food Science and Human Nutrition, Jeonbuk National University, Jeonju 54896, Republic of Korea
2. Department of Food Science and Nutrition, Pukyong National University, Busan 48547, Republic of Korea
3. Department of Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N4N1, Canada
Abstract
Morus bombycis has a long history of usage as a treatment for metabolic diseases, especially, diabetes mellitus (DM). Thus, we aimed to isolate and evaluate bioactive constituents derived from M. bombycis leaves for the treatment of DM. According to bioassay-guided isolation by column chromatography, eight compounds were obtained from M. bombycis leaves: two phenolic compounds, p-coumaric acid (1) and chlorogenic acid methyl ester (2), one stilbene, oxyresveratrol (3), two stilbene dimers, macrourin B (4) and austrafuran C (6), one 2-arylbenzofuran, moracin M (5), and two Diels–Alder type adducts, mulberrofuran F (7) and chalcomoracin (8). Among the eight isolated compounds, the anti-DM activity of 3–8 (which possess chemotaxonomic significance in Morus species) was evaluated by inhibition of α-glucosidase, protein tyrosine phosphatase 1B (PTP1B), human recombinant aldose reductase (HRAR), and advanced glycation end-product (AGE) formation as well as by scavenging peroxynitrite (ONOO−), which are crucial therapeutic targets of DM and its complications. Compounds 4 and 6–8 significantly inhibited α-glucosidase, PTP1B, and HRAR enzymes with mixed-type and non-competitive-type inhibition modes. Furthermore, the four compounds had low negative binding energies in both enzymes according to molecular docking simulation, and compounds 3–8 exhibited strong antioxidant capacity by inhibiting AGE formation and ONOO− scavenging. Overall results suggested that the most active stilbene-dimer-type compounds (4 and 6) along with Diels–Alder type adducts (7 and 8) could be promising therapeutic and preventive resources against DM and have the potential to be used as antioxidants, anti-diabetic agents, and anti-diabetic complication agents.
Funder
Basic Science Research Program through the National Research Foundation of Korea
Ministry of Science and ICT
Ministry of Education
Subject
Cell Biology,Clinical Biochemistry,Molecular Biology,Biochemistry,Physiology
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献