Molecular Study on Twin Cohort with Discordant Birth Weight

Author:

Chakraborty Payal12ORCID,Orvos Hajnalka3,Hermesz Edit1ORCID

Affiliation:

1. Department of Biochemistry and Molecular Biology, Faculty of Science and Informatics, University of Szeged, P.O. Box 533, H-6701 Szeged, Hungary

2. Department of Pharmaceutical Technology, JIS University, 81, Nilgunj Road, Kolkata 700109, India

3. Department of Obstetrics and Gynaecology, Faculty of Medicine, University of Szeged, Semmelweis u. 1, H-6725 Szeged, Hungary

Abstract

The increased rate of twinning has pointed out newer challenges in clinical practices related to gestational complications, intrauterine growth restriction, perinatal mortality, and comorbidities. As a twin pregnancy progresses, the increased demand for oxygen supply can easily disrupt the redox homeostasis balance and further impose a greater challenge for the developing fetuses. A substantial birth-weight difference acts as an indicator of a deficit in oxygenation or blood flow to one of the fetuses, which might be related to a low bioavailable nitric oxide level. Therefore, in this study, we focused on networks involved in the adjustment of oxygen supply, like the activation of inducible and endothelial nitric oxide synthase (NOS3) along with free radical and lipid peroxide formation in mature twin pairs with high birth-weight differences. The selected parameters were followed by immunofluorescence staining, fluorescence-activated cell sorting analysis, and biochemical measurements in the umbilical cord vessels and fetal red blood cells. Based on our data set, it is clear that the lower-weight siblings are markedly exposed to persistent intrauterine hypoxic conditions, which are connected to a decreased level in NOS3 activation. Furthermore, the increased level of peroxynitrite aggravates lipid peroxidation and induces morphological and functional damage and loss in redox homeostasis.

Funder

European Union

Publisher

MDPI AG

Subject

Cell Biology,Clinical Biochemistry,Molecular Biology,Biochemistry,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3