Dimethyl Fumarate Protects Retinal Pigment Epithelium from Blue Light-Induced Oxidative Damage via the Nrf2 Pathway

Author:

Shimizu HideyukiORCID,Takayama KeiORCID,Yamada Kazuhisa,Suzumura Ayana,Sato Tomohito,Nishio Yoshiaki,Ito Masataka,Ushida Hiroaki,Nishiguchi Koji M,Takeuchi MasaruORCID,Kaneko HirokiORCID

Abstract

The purpose of this study is to investigate the protective effect of dimethyl fumarate (DMF), the methyl-ester of fumaric acid, against blue-light (BL) exposure in retinal pigment epithelial (RPE) cells. ARPE-19 cells, a human RPE cell line, were cultured with DMF followed by exposure to BL. Reactive oxygen species (ROS) generation, cell viability, and cell death rate were determined. Real-time polymerase chain reaction and Western blotting were performed to determine the change in nuclear factor (erythroid-derived)-like 2 (NRF2) expression. Twenty-seven inflammatory cytokines in the supernatant of culture medium were measured. BL exposure induced ROS generation in ARPE-19 cells, which DMF alleviated in a concentration-dependent manner. BL exposure increased the ARPE-19 cell death rate, which DMF alleviated. BL exposure induced ARPE-19 cell apoptosis, again alleviated by DMF. Under BL exposure, DMF increased the NRF2 mRNA level and promoted NRF2 expression in the nucleus. BL also strongly increased interleukin (IL)-1β and fibroblast growth factor (FGF) expression. BL strongly induced RPE cell damage with apoptotic change while DMF mainly reduced inflammation in BL-induced RPE damage, resulting in blockade of cell death. DMF has a protective effect in RPE cells against BL exposure via activation of the NRF2 pathway.

Funder

Grants-in-Aid for Scientific Research (C) and Grants-in-Aid for Young Scientific from JSPS KAKENHI, Takeda Science Foundation and The Naito Foundation.

Publisher

MDPI AG

Subject

Cell Biology,Clinical Biochemistry,Molecular Biology,Biochemistry,Physiology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3