Abstract
Myrtle liqueur production generates high amounts of by-products that can be employed for the extraction of bioactive compounds. Bio-based, non-toxic and biodegradable solvents (ethyl acetate and 2-methyltetrahydrofuran), and a mechanical extraction were applied to myrtle seeds, by-products of the liqueur production, to extract oils rich in phenolic compounds. The oils obtained were characterized for yield, peroxide value (PV), lipid composition, and total phenolic concentration (TPC). The phenolic profile of the oils, determined by LC-MS, the antioxidant activity, and the oxidative stability were also analyzed. A validated UHPLC-ESI-QTRAP-MS/MS analytical method in multiple reaction monitoring (MRM) mode was applied to quantify myricetin and its main derivatives in myrtle oils. The results pointed out clear differences among extraction methods on myricetin concentration. The oxidative stability of myrtle oils was studied with electron paramagnetic resonance (EPR) spectroscopy highlighting the effect of the extraction method on the oxidation status of the oils and the role of phenolic compounds in the evolution of radical species over time. A principal component analysis applied to LC-MS data highlighted strong differences among phenolic profiles of the oils and highlighted the role of myricetin in the oxidative stability of myrtle oils. Myrtle oil, obtained from the by-products of myrtle liqueur processing industry, extracted with sustainable and green methods might have potential application in food or cosmetic industries.
Funder
European Union Next-GenerationEU
Subject
Cell Biology,Clinical Biochemistry,Molecular Biology,Biochemistry,Physiology
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献