Antioxidant Activity of Sweet Whey Derived from Bovine, Ovine and Caprine Milk Obtained from Various Small-Scale Cheese Plants in Greece before and after In Vitro Simulated Gastrointestinal Digestion

Author:

Dalaka Eleni1,Politis Ioannis1,Theodorou Georgios1ORCID

Affiliation:

1. Laboratory of Animal Breeding and Husbandry, Department of Animal Science, Agricultural University of Athens, 11855 Athens, Greece

Abstract

Whey-derived peptides have been associated with different biological properties, but most peptides are usually further hydrolyzed during the digestive process. In the present study, the antioxidant capacity of 48 samples of sweet whey (SW) derived from cheeses obtained from small-scale cheese plants made with bovine, ovine, caprine or a mixture of ovine/caprine milk was assessed using both cell-free and cell-based assays. SW digestates (SW-Ds) and a fraction (<3 kDa; SW-D-P3) thereof were obtained after in vitro digestion and subsequent ultrafiltration. Antioxidant properties using four different assays were evaluated before and after digestion. Our data showed higher values (p < 0.05) for ORAC, ABTS, FRAP and P-FRAP after in vitro digestion (SW-Ds and SW-D-P3) when compared with the corresponding values before digestion. In the non-digested SW, ORAC values were higher (p < 0.05) for the bovine SW compared with all the other samples. In contrast, the ABTS assay indicated a higher antioxidant activity for the ovine SW both before digestion and for SW-D-P3 compared with the bovine SW. The fraction SW-D-P3 of the ovine SW, using HT29 cells and H2O2 as an oxidizing agent, increased (p < 0.05) the cellular antioxidant activity. Furthermore, the same fraction of the ovine/caprine mixed SW increased, through the NF-κB pathway, the expression of SOD1 and CAT, genes implicated in the oxidative response in macrophage-like THP-1 cells. These findings indicate that SW, and particularly bovine and ovine SW, could be a candidate source for physical antioxidants in human and animal nutrition.

Publisher

MDPI AG

Subject

Cell Biology,Clinical Biochemistry,Molecular Biology,Biochemistry,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3