Discrimination of Green Coffee (Coffea arabica and Coffea canephora) of Different Geographical Origin Based on Antioxidant Activity, High-Throughput Metabolomics, and DNA RFLP Fingerprinting

Author:

Mannino Giuseppe1ORCID,Kunz Ronja2,Maffei Massimo E.1ORCID

Affiliation:

1. Department of Life Sciences and Systems Biology, University of Turin, Via Quarello 15/A, 10135 Turin, Italy

2. Department of Chemistry, University of Cologne, Zülpicher Straße 47, D-50939 Köln, Germany

Abstract

The genus Coffea is known for the two species C. arabica (CA) and C. canephora (CC), which are used to prepare the beverage coffee. Proper identification of green beans of coffee varieties is based on phenotypic and phytochemical/molecular characteristics. In this work, a combination of chemical (UV/Vis, HPLC-DAD–MS/MS, GC–MS, and GC-FID) and molecular (PCR-RFLP) fingerprinting was used to discriminate commercial green coffee accessions from different geographical origin. The highest content of polyphenols and flavonoids was always found in CC accessions, whereas CA showed lower values. ABTS and FRAP assays showed a significant correlation between phenolic content and antioxidant activity in most CC accessions. We identified 32 different compounds, including 28 flavonoids and four N-containing compounds. The highest contents of caffeine and melatonin were detected in CC accessions, whereas the highest levels of quercetin and kaempferol derivatives were found in CA accessions. Fatty acids of CC accessions were characterized by low levels of linoleic and cis octadecenoic acid and high amounts of elaidic acid and myristic acid. Discrimination of species according to their geographical origin was achieved using high-throughput data analysis, combining all measured parameters. Lastly, PCR-RFLP analysis was instrumental for the identification of recognition markers for the majority of accessions. Using the restriction enzyme AluI on the trnL-trnF region, we clearly discriminated C. canephora from C. arabica, whereas the cleavage performed by the restriction enzymes MseI and XholI on the 5S-rRNA-NTS region produced specific discrimination patterns useful for the correct identification of the different coffee accessions. This work extends our previous studies and provides new information on the complete flavonoid profile, combining high-throughput data with DNA fingerprinting to assess the geographical discrimination of green coffee.

Funder

University of Turin

Publisher

MDPI AG

Subject

Cell Biology,Clinical Biochemistry,Molecular Biology,Biochemistry,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3