Salt Stress-Induced Modulation of Porphyrin Biosynthesis, Photoprotection, and Antioxidant Properties in Rice Plants (Oryza sativa)

Author:

Nguyen Anh Trung1,Tran Lien Hong1,Jung Sunyo1

Affiliation:

1. BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, Kyungpook National University, Daegu 41566, Republic of Korea

Abstract

Salt stress disrupts cellular ion homeostasis and adversely impacts plant growth and productivity. We examined the regulatory mechanisms of porphyrin biosynthesis, photoprotection, and antioxidant properties in salt-stressed rice seedlings. In response to 150 mM NaCl, the rice seedlings exhibited dehydration, reduced relative water content, and increased levels of conductivity, malondialdehyde, and H2O2. The expression levels of the salt-stress-responsive genes NHX1, SOS1, and MYB drastically increased after NaCl treatment. The seedlings grown under NaCl stress displayed declines in Fv/Fm, ΦPSII, rETRmax, and photochemical quenching but increases in nonphotochemical quenching (NPQ) and the expression of genes involved in zeaxanthin formation, BCH, and VDE. Under salt stress conditions, levels of chlorophyll precursors significantly decreased compared to controls, matching the downregulation of CHLD, CHLH, CHLI, and PORB. By contrast, NaCl treatment led to increased heme content at 24 h of treatment and significant upregulations of FC2, HO1, and HO2 compared to controls. Salt-stressed seedlings also increased their expression of CATs (catalases) and APXs (ascorbate peroxidases) as well as the activities of superoxide dismutase, CAT, APX, and peroxidase. Our results indicate that chlorophyll and heme biosynthesis involve the protective strategies for salt stress alleviation through photoprotection by the scavenging of chlorophyll precursors and NPQ as well as activating antioxidant enzymes.

Funder

Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education

Publisher

MDPI AG

Subject

Cell Biology,Clinical Biochemistry,Molecular Biology,Biochemistry,Physiology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3