Glutathione during Post-Thaw Recovery Culture Can Mitigate Deleterious Impact of Vitrification on Bovine Oocytes

Author:

Olexiková LuciaORCID,Dujíčková Linda,Makarevich Alexander V.,Bezdíček Jiří,Sekaninová Jana,Nesvadbová Andrea,Chrenek Peter

Abstract

Vitrification of bovine oocytes can impair subsequent embryo development mostly due to elevated oxidative stress. This study was aimed at examining whether glutathione, a known antioxidant, can improve further embryo development when added to devitrified oocytes for a short recovery period. Bovine in vitro matured oocytes were vitrified using an ultra-rapid cooling technique on electron microscopy grids. Following warming, the oocytes were incubated in the recovery medium containing glutathione (0, 1.5, or 5 mmol L−1) for 3 h (post-warm recovery). Afterwards, the oocytes were lysed for measuring the total antioxidant capacity (TAC), activity of peroxidase, catalase and glutathione reductase, and ROS formation. The impact of vitrification on mitochondrial and lysosomal activities was also examined. Since glutathione, added at 5 mmol L−1, significantly increased the TAC of warmed oocytes, in the next set of experiments this dose was applied for post–warm recovery of oocytes used for IVF. Glutathione in the recovery culture did not change the total blastocyst rate, while increased the proportion of faster developing blastocysts (Day 6–7), reduced the apoptotic cell ratio and reversed the harmful impact of vitrification on the actin cytoskeleton. These results suggest that even a short recovery culture with antioxidant(s) can improve the development of bovine devitrified oocytes.

Funder

Slovak Research and Development Agency

Operational Programme Integrated Infrastructure

Palacky University

Publisher

MDPI AG

Subject

Cell Biology,Clinical Biochemistry,Molecular Biology,Biochemistry,Physiology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. THE RESISTANCE OF OOCYTES AND IN VITRO PRODUCED CATTLE EMBRYOS TO CRYOPRESERVATION;Journal of microbiology, biotechnology and food sciences;2023-11-29

2. Static magnetic field assisted thawing improves cryopreservation of mouse whole ovaries;Bioengineering & Translational Medicine;2023-10-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3