Affiliation:
1. College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
2. College of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College Agriculture and Forestry, Jurong 215314, China
Abstract
Increasing evidence shows that lncRNAs, an important kind of endogenous regulator, are involved in the regulation of follicular development and female fertility, but the mechanism remain largely unknown. In this study, we found that SDNOR, a recently identified antiapoptotic lncRNA, is a potential multifunctional regulator in porcine follicular granulosa cells (GCs) through RNA-seq and multi-dimension analyses. SDNOR-mediated regulatory networks were established and identified that SOX9, a transcription factor inhibited by SDNOR, mediates SDNOR’s regulation of the transcription of downstream targets. Functional analyses showed that loss of SDNOR significantly impairs GC morphology, inhibits cell proliferation and viability, reduces E2/P4 index, and suppresses the expression of crucial markers, including PCNA, Ki67, CDK2, CYP11A1, CYP19A1, and StAR. Additionally, after the detection of ROS, SOD, GSH-Px, and MDA, we found that SDNOR elevates the resistance of GCs to oxidative stress (OS) and also inhibits OS-induced apoptosis. Notably, GCs with high SDNOR levels are insensitive to oxidative stress, leading to lower apoptosis rates and higher environmental adaptability. In summary, our findings reveal the regulation of porcine GCs in response to oxidative stress from the perspective of lncRNA and demonstrate that SDNOR is an essential antioxidative lncRNA for maintaining the normal state and function of GCs.
Funder
National Natural Science Foundation of China
Jiangsu Seed Industry Revitalization Project
Subject
Cell Biology,Clinical Biochemistry,Molecular Biology,Biochemistry,Physiology