In the Alphaproteobacterium Hyphomicrobium denitrificans SoxR Serves a Sulfane Sulfur-Responsive Repressor of Sulfur Oxidation

Author:

Li Jingjing1,Törkel Kaya1,Koch Julian1,Tanabe Tomohisa Sebastian1ORCID,Hsu Hsun Yun1,Dahl Christiane1ORCID

Affiliation:

1. Institut für Mikrobiologie & Biotechnologie, Rheinische Friedrich-Wilhelms-Universität Bonn, Meckenheimer Allee 168, 53115 Bonn, Germany

Abstract

In organisms that use reduced sulfur compounds as alternative or additional electron donors to organic compounds, transcriptional regulation of genes for enzymes involved in sulfur oxidation is needed to adjust metabolic flux to environmental conditions. However, little is known about the sensing and response to inorganic sulfur compounds such as thiosulfate in sulfur-oxidizing bacteria. In the Alphaproteobacterium Hyphomicrobium denitrificans, one strategy is the use of the ArsR–SmtB-type transcriptional regulator SoxR. We show that this homodimeric repressor senses sulfane sulfur and that it is crucial for the expression not only of sox genes encoding the components of a truncated periplasmic thiosulfate-oxidizing enzyme system but also of several other sets of genes for enzymes of sulfur oxidation. DNA binding and transcriptional regulatory activity of SoxR are controlled by polysulfide-dependent cysteine modification. The repressor uses the formation of a sulfur bridge between two conserved cysteines as a trigger to bind and release DNA and can also form a vicinal disulfide bond to orchestrate a response to oxidizing conditions. The importance of the sulfur bridge forming cysteines was confirmed by site-directed mutagenesis, mass spectrometry, and gel shift assays. In vivo, SoxR interacts directly or indirectly with a second closely related repressor, sHdrR.

Funder

German Science Foundation

China Scholarship Council

Studienstiftung des Deutschen Volkes

Publisher

MDPI AG

Subject

Cell Biology,Clinical Biochemistry,Molecular Biology,Biochemistry,Physiology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3