Urban River Dissolved Oxygen Prediction Model Using Machine Learning

Author:

Moon Juhwan,Lee JaejoonORCID,Lee Sangwon,Yun HongsikORCID

Abstract

This study outlines the preliminary stages of the development of an algorithm to predict the optimal WQ of the Hwanggujicheon Stream. In the first stages, we used the AdaBoost algorithm model to predict the state of WQ, using data from the open artificial intelligence (AI) hub. The AdaBoost algorithm has excellent predictive performance and model suitability and was selected for random forest and gradient boosting (GB)-based boosting models. To predict the optimized WQ, we selected pH, SS, water temperature, total nitrogen(TN), dissolved total phosphorus(DTP), NH3-N, chemical oxygen demand (COD), dissolved total nitrogen (DTN), and NO3-N as the input variables of the AdaBoost model. Dissolved oxygen (DO) was used as the target variable. Third, an algorithm showing excellent predictive power was selected by analyzing the prediction accuracy according to the input variable by using the random forest or GB series algorithm in the initial model. Finally, the performance evaluation of the ultimately developed predictive model demonstrated that RMS was 0.015, MAE was 0.009, and R2 was 0.912. The coefficient of the variation of the root mean square error (CVRMSE) was 17.404. R2 0.912 and CVRMSE were 17.404, indicating that the predictive model developed meets the criteria of ASHRAE Guideline 14. It is imperative that government and administrative agencies have access to effective tools to assess WQ and pollution levels in their local bodies of water.

Funder

Korean Ministry of Interior and Safety

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3