Chemical Oxidation and Reduction Pathways of Mercury Relevant to Natural Waters: A Review

Author:

Si Lin,Branfireun Brian A.,Fierro Jessica

Abstract

Mercury (Hg) pollution in the environment is a global issue and the toxicity of mercury depends on its speciation. Chemical redox reactions of mercury in an aquatic environment greatly impact on Hg evasion to the atmosphere and the methylation of mercury in natural waters. Identifying the abiotic redox pathways of mercury relevant to natural waters is important for predicting the transport and fate of Hg in the environment. The objective of this review is to summarize the current state of knowledge on specific redox reactions of mercury relevant to natural waters at a molecular level. The rate constants and factors affecting them, as well as the mechanistic information of these redox pathways, are discussed in detail. Increasing experimental evidence also implied that the structure of natural organic matter (NOM) play an important role in dark Hg(II) reduction, dark Hg(0) oxidation and Hg(II) photoreduction in the aquatic environment. Significant photooxidation pathways of Hg(0) identified are Hg(0) photooxidation by hydroxyl radical (OH•) and by carbonate radical (CO3−•). Future research needs on improving the understanding of Hg redox cycling in natural waters are also proposed.

Funder

Auburn University at Montgomery Research Grant-in-Aid Program

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3