Abstract
With the development of convolutional neural networks, the effect of pedestrian detection has been greatly improved by deep learning models. However, the presence of pseudo pedestrians will lead to accuracy reduction in pedestrian detection. To solve the problem that the existing pedestrian detection algorithms cannot distinguish pseudo pedestrians from real pedestrians, a real and pseudo pedestrian detection method with CA-YOLOv5s based on stereo image fusion is proposed in this paper. Firstly, the two-view images of the pedestrian are captured by a binocular stereo camera. Then, a proposed CA-YOLOv5s pedestrian detection algorithm is used for the left-view and right-view images, respectively, to detect the respective pedestrian regions. Afterwards, the detected left-view and right-view pedestrian regions are matched to obtain the feature point set, and the 3D spatial coordinates of the feature point set are calculated with Zhengyou Zhang’s calibration method. Finally, the RANSAC plane-fitting algorithm is adopted to extract the 3D features of the feature point set, and the real and pseudo pedestrian detection is achieved by the trained SVM. The proposed real and pseudo pedestrian detection method with CA-YOLOv5s based on stereo image fusion effectively solves the pseudo pedestrian detection problem and efficiently improves the accuracy. Experimental results also show that for the dataset with real and pseudo pedestrians, the proposed method significantly outperforms other existing pedestrian detection algorithms in terms of accuracy and precision.
Funder
Science and Technology Department of Henan Province:
Education Department of Henan Province
Zhongyuan University of Technology
Subject
General Physics and Astronomy