Demand-Side Optimal Sizing of a Solar Energy–Biomass Hybrid System for Isolated Greenhouse Environments: Methodology and Application Example

Author:

Gil Juan D.ORCID,Ramos-Teodoro JerónimoORCID,Romero-Ramos José A.ORCID,Escobar Rodrigo,Cardemil José M.ORCID,Giagnocavo CynthiaORCID,Pérez ManuelORCID

Abstract

The water–energy–food nexus has captured the attention of many researchers and policy makers for the potential synergies between those sectors, including the development of self-sustainable solutions for agriculture systems. This paper poses a novel design approach aimed at balancing the trade-off between the computational burden and accuracy of the results. The method is based on the combination of static energy hub models of the system components and rule-based control to simulate the operational costs over a one-year period as well as a global optimization algorithm that provides, from those results, a design that maximizes the solar energy contribution. The presented real-world case study is based on an isolated greenhouse, whose water needs are met due to a desalination facility, both acting as heat consumers, as well as a solar thermal field and a biomass boiler that cover the demand. Considering the Almerian climate and 1 ha of tomato crops with two growing seasons, the optimal design parameters were determined to be (with a solar fraction of 16% and a biomass fraction of 84%): 266 m2 for the incident area of the solar field, 425 kWh for the thermal storage system, and 4234 kW for the biomass-generated power. The Levelized Cost of Heat (LCOH) values obtained for the solar field and biomass boiler were 0.035 and 0.078 €/kWh, respectively, and the discounted payback period also confirmed the profitability of the plant for fuel prices over 0.05 €/kWh. Thus, the proposed algorithm is useful as an innovative decision-making tool for farmers, for whom the burden of transitioning to sustainable farming systems might increase in the near future.

Funder

Agencia Estatal de Investigación

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3