CFD–DEM Simulation of Sand-Retention Mechanisms in Slurry Flow

Author:

Razavi FatemehORCID,Komrakova AlexandraORCID,Lange Carlos F.ORCID

Abstract

The primary motivation of this paper is to investigate the sand-retention mechanisms that occur at the opening of sand filters. Various retention mechanisms under various conditions are explored that have a particulate flow with a low concentration of sand particles (called slurry flow) such as particle shape, size, and concentration. The computational fluid dynamic (CFD)–discrete element method (DEM) model is applied to predict the retention mechanisms under steady flow conditions of the well-bore. By using coupled CFD–DEM (CFD to model the fluid flow, and DEM to model the particle flow), the physics involved in the retention mechanisms is studied. The coarse grid unresolved and the smoothed unresolved (refined grid unresolved) coupling approaches implemented in STAR-CCM+ (SIEMENS PLM) are used to transfer data between the fluid and solid phases and calculate the forces. The filter slots under investigation have different geometries: straight, keystone, wire-wrapped screen (WWS) and seamed slot and the particles are considered with different shapes and different aspect ratios and size distributions. The flow regime is laminar in all simulations conducted. The CFD–DEM model is validated from the perspectives of particle–fluid, particle–particle, and particle–wall interactions. Verification of the CFD–DEM model is conducted by mesh sensitivity analysis to investigate the coupling resolution between the CFD and DEM. By simulation of numerous slurry flow scenarios, three retention mechanisms including surface deposition, size exclusion, and sequential arching of particles are observed. However, the concentration of particles is too diluted to result in multiparticle arch formation. In the simulations, various conditions are tested to give us an insight into the parameters and conditions that could affect the occurrence of the retention mechanisms. As an example, the importance of the gravity force and interaction forces on retention mechanisms are confirmed at the microscale in comparison with others forces involved in retention mechanisms such as the drag force, lift force, cohesive force, buoyancy force, and virtual mass force.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference50 articles.

1. Sand Screen Selection;Andrews;Oilfield Rev.,2015

2. Sand Control: Why and How?;Carlson;Oilf. Rev.,1992

3. A Critical Review of Sand Control Design for SAGD Wells;Fattahpour;World Heavy Oil Congr.,2016

4. A Stokesian dynamics model for particle deposition and bridging in granular media

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3