Author:
Hur Min-Seok,Moon Seong-Won,Kim Tong-Seop
Abstract
A new type of stepped seal with a ribbed casing is proposed to efficiently reduce the leakage at the tips of turbine blades. The leakage characteristics of two different types of labyrinth seals (conventional seal vs. ribbed seal) were compared and analyzed through computational fluid dynamics (CFD) in a wide operating range of pressure ratios and clearances. The analysis showed that the ribbed seal has superior leakage performance to the conventional seal at all clearance sizes. With the same clearance size (S/H = 1.0), the flow function of the ribbed seal was approximately 21.5–42.6% less than that of the conventional seal. Also, different trends of variation in the flow function according to the increase of the clearance were found between the conventional and ribbed seals. The leakage flow inside the labyrinth seal was analyzed to explain the cause of this difference in tendency, and it was confirmed that the added ribs cause collision between the leakage flow and the tooth wall, even with the increase of the clearance. Also, the ribbed seal enables operation at a larger clearance with the same leakage performance when comparing the absolute leakage flow rate of the two seals. In addition, a parametric study on the influence of the rib height and rib inclination angle revealed that the flow function generally decreases as both parameters increase.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献