Abstract
To reduce the cost of arranging air foam flooding equipment at each wellhead, a method of establishing centralized air foam flooding injection stations is proposed. The flow pattern and resistance characteristics of air foam flooding mixtures in different initial conditions are studied. Experimental results indicate that the probability density function of stratified flow is obtained by comparing stainless steel and transparent pipes. If the gas–liquid ratio is kept constant, then the shape of the probability density function remains unchanged in both stainless steel and transparent tubes. Meanwhile, the flow pattern under the gas–liquid ratio is determined by comparing the image recognition results with the probability density function, and a formula for calculating the resistance and pressure drop of the gas and liquid two-phase flow in the horizontal and upward pipes is established. Compared with the experiments, the error results of the calculation are small. Thus, the proposed equations can be used to predict the flow resistance of real air foam flooding.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献