Multifactor Mathematical Modeling and Analysis of the Impact of Extreme Climate on Geological Disasters

Author:

Yang Xiaoyu1ORCID,Sun Xiaohui1ORCID,Tang Li1ORCID

Affiliation:

1. College of Mining Engineering, Taiyuan University of Technology, Taiyuan 030024, China

Abstract

Objective: To investigate the impact of extreme climate on geological disasters in Shanxi and propose effective disaster prevention and mitigation strategies. Methods: Using daily temperature and precipitation data from 27 meteorological stations in Shanxi Province from 1975 to 2020, 32 extreme climate indices were calculated. Combined with geological disaster site data, the distribution characteristics of extreme climates and their relationship with geological disasters were analyzed, and a regression model for geological disaster risk zones was constructed. Results: Sixteen extreme climate indices in Shanxi Province showed significant changes, especially TMAXmean (100% significant). Indices related to negative precipitation effects showed a declining trend, with 77.78% being significant, while 96.3% of positive temperature effect indices showed an increasing trend, with 73.6% being significant. Geological disaster hotspots were concentrated in the mid-altitude (500–1500 m) hilly and low mountain areas along the central north–south axis and on Q and Pz strata. Extreme high-temperature indices were significantly positively correlated with geological disaster hotspots, while extreme low-temperature indices were negatively correlated. Indices related to extreme heavy precipitation (e.g., R99p.Slope, RX5day.Slope) were associated with an increase in geological disaster hotspots, whereas higher total precipitation and frequent heavy precipitation events were associated with a decrease in disaster hotspots. The grey relational degree between the Z-score and TXn.Slope, TXx.Slope, GSL.Slope, and TX90P.Slope was greater than 0.8. The random forest model performed best in evaluation metrics such as MAE, RMSE, and R2. Conclusions: Shanxi is likely to experience more extreme high-temperature and precipitation events in the future. The low-altitude hilly and terraced areas in Zones III and VII are key regions for geological disaster prevention and control. High temperatures and extreme rainfall events generally increase the disaster risk, while higher total precipitation reduces it. The random forest model is the optimal tool for predicting geological disaster risks in Shanxi Province.

Funder

Fundamental Research Program of Shanxi Province

Publisher

MDPI AG

Reference37 articles.

1. Climate System Prediction: Fundamental Innovation and Integrated Application;Wang;J. Atmos. Sci.,2024

2. Urban Responses to Global Extreme Climate;Deng;Ecol. Econ.,2023

3. Qin, D.H., Zhang, J.Y., Shan, C.C., and Song, L. (2015). China National Assessment Report on Risk Management and Adaptation of Climate Extremes and Disasters, Science Press. (In Chinese).

4. Engineering Geology of Extreme Climate: Research Progress on Drought Disasters and Countermeasures;Tang;Bull. Sci.,2020

5. Insights into natural tuff as a building material: Effects of natural joints on fracture fractal characteristics and energy evolution of rocks under impact load;Zuo;Eng. Fail. Anal.,2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3