Machine Learning-Based Aggression Detection in Children with ADHD Using Sensor-Based Physical Activity Monitoring

Author:

Park Catherine1,Rouzi Mohammad Dehghan1ORCID,Atique Md Moin Uddin1,Finco M. G.1ORCID,Mishra Ram Kinker1,Barba-Villalobos Griselda2,Crossman Emily2,Amushie Chima2,Nguyen Jacqueline2,Calarge Chadi2,Najafi Bijan1ORCID

Affiliation:

1. Interdisciplinary Consortium on Advanced Motion Performance (iCAMP), Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA

2. Menninger Department of Psychiatry and Behavioral Sciences and Department of Pediatrics, Baylor College of Medicine, Texas Children’s Hospital, Houston, TX 77030, USA

Abstract

Aggression in children is highly prevalent and can have devastating consequences, yet there is currently no objective method to track its frequency in daily life. This study aims to investigate the use of wearable-sensor-derived physical activity data and machine learning to objectively identify physical-aggressive incidents in children. Participants (n = 39) aged 7 to 16 years, with and without ADHD, wore a waist-worn activity monitor (ActiGraph, GT3X+) for up to one week, three times over 12 months, while demographic, anthropometric, and clinical data were collected. Machine learning techniques, specifically random forest, were used to analyze patterns that identify physical-aggressive incident with 1-min time resolution. A total of 119 aggression episodes, lasting 7.3 ± 13.1 min for a total of 872 1-min epochs including 132 physical aggression epochs, were collected. The model achieved high precision (80.2%), accuracy (82.0%), recall (85.0%), F1 score (82.4%), and area under the curve (89.3%) to distinguish physical aggression epochs. The sensor-derived feature of vector magnitude (faster triaxial acceleration) was the second contributing feature in the model, and significantly distinguished aggression and non-aggression epochs. If validated in larger samples, this model could provide a practical and efficient solution for remotely detecting and managing aggressive incidents in children.

Funder

National Institutes of Health, NIH

National Science Foundation Center to Stream Health in Place, C2SHIP

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3