Affiliation:
1. Interdisciplinary Consortium on Advanced Motion Performance (iCAMP), Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA
2. Menninger Department of Psychiatry and Behavioral Sciences and Department of Pediatrics, Baylor College of Medicine, Texas Children’s Hospital, Houston, TX 77030, USA
Abstract
Aggression in children is highly prevalent and can have devastating consequences, yet there is currently no objective method to track its frequency in daily life. This study aims to investigate the use of wearable-sensor-derived physical activity data and machine learning to objectively identify physical-aggressive incidents in children. Participants (n = 39) aged 7 to 16 years, with and without ADHD, wore a waist-worn activity monitor (ActiGraph, GT3X+) for up to one week, three times over 12 months, while demographic, anthropometric, and clinical data were collected. Machine learning techniques, specifically random forest, were used to analyze patterns that identify physical-aggressive incident with 1-min time resolution. A total of 119 aggression episodes, lasting 7.3 ± 13.1 min for a total of 872 1-min epochs including 132 physical aggression epochs, were collected. The model achieved high precision (80.2%), accuracy (82.0%), recall (85.0%), F1 score (82.4%), and area under the curve (89.3%) to distinguish physical aggression epochs. The sensor-derived feature of vector magnitude (faster triaxial acceleration) was the second contributing feature in the model, and significantly distinguished aggression and non-aggression epochs. If validated in larger samples, this model could provide a practical and efficient solution for remotely detecting and managing aggressive incidents in children.
Funder
National Institutes of Health, NIH
National Science Foundation Center to Stream Health in Place, C2SHIP
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献